Everything you need to know about NLP

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of “understanding” the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.

Request Consultant

NLP

Statistical NLP

Up to the 1980s, most NLP systems were based on complex sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in natural language processing with the introduction of machine learning algorithms for language processing. This was due to both the steady increase in computational power and the gradual lessening of the dominance of Chomskyan theories of linguistics (e.g. transformational grammar), whose theoretical underpinnings discouraged the sort of corpus linguistics that underlies the machine-learning approach to language processing.

Neural NLP (present)

In the 2010s, representation learning and deep neural network-style machine learning methods became widespread in natural language processing. That popularity was due partly to a flurry of results showing that such techniques can achieve state-of-the-art results in many natural language tasks, e.g., in language modeling and parsing. This is increasingly important in medicine and healthcare, where NLP helps analyze notes and text in electronic health records that would otherwise be inaccessible for study when seeking to improve care.

In the early days, many language-processing systems were designed by symbolic methods, i.e., the hand-coding of a set of rules, coupled with a dictionary lookup: such as by writing grammars or devising heuristic rules for stemming. More recent systems based on machine-learning algorithms have many advantages over hand-produced rules:

Despite the popularity of machine learning in NLP research, symbolic methods are still (2020) commonly used:

Statistical Methods

Since the so-called “statistical revolution” in the late 1980s and mid-1990s, much natural language processing research has relied heavily on machine learning. The machine-learning paradigm calls instead for using statistical inference to automatically learn such rules through the analysis of large corpora (the plural form of corpus, is a set of documents, possibly with human or computer annotations) of typical real-world examples.

Many different classes of machine-learning algorithms have been applied to natural-language-processing tasks. These algorithms take as input a large set of “features” that are generated from the input data. Increasingly, however, research has focused on statistical models, which make soft, probabilistic decisions based on attaching real-valued weights to each input feature (complex-valued embeddings, and neural networks in general have also been proposed, for e.g. speech). Such models have the advantage that they can express the relative certainty of many different possible answers rather than only one, producing more reliable results when such a model is included as a component of a larger system.

Some of the earliest-used machine learning algorithms, such as decision trees, produced systems of hard if-then rules similar to existing hand-written rules. However, part-of-speech tagging introduced the use of hidden Markov models to natural language processing, and increasingly, research has focused on statistical models, which make soft, probabilistic decisions based on attaching real-valued weights to the features making up the input data. The cache language models upon which many speech recognition systems now rely are examples of such statistical models. Such models are generally more robust when given unfamiliar input, especially input that contains errors (as is very common for real-world data), and produce more reliable results when integrated into a larger system comprising multiple subtasks.

Since the neural turn, statistical methods in NLP research have been largely replaced by neural networks. However, they continue to be relevant for contexts in which statistical interpretability and transparency is required.

Common NLP Tasks

Text and Speech Processing

Morphological Analysis

Syntactic Analysis

Lexical Semantics

Relational Semantics

Discourse

Common NLP Tasks

Grammatical error correction

Grammatical error detection and correction involves a great band-width of problems on all levels of linguistic analysis (phonology/orthography, morphology, syntax, semantics, pragmatics). Grammatical error correction is impactful since it affects hundreds of millions of people that use or acquire English as a second language. It has thus been subject to a number of shared tasks since 2011. As far as orthography, morphology, syntax and certain aspects of semantics are concerned, and due to the development of powerful neural language models such as GPT-2, this can now (2019) be considered a largely solved problem and is being marketed in various commercial applications.

 

Automatic summarization

Produce a readable summary of a chunk of text. Often used to provide summaries of the text of a known type, such as research papers, articles in the financial section of a newspaper.

Natural-language understanding (NLU)

Convert chunks of text into more formal representations such as first-order logic structures that are easier for computer programs to manipulate. Natural language understanding involves the identification of the intended semantic from the multiple possible semantics which can be derived from a natural language expression which usually takes the form of organized notations of natural language concepts. Introduction and creation of language metamodel and ontology are efficient however empirical solutions. An explicit formalization of natural language semantics without confusions with implicit assumptions such as closed-world assumption (CWA) vs. open-world assumption, or subjective Yes/No vs. objective True/False is expected for the construction of a basis of semantics formalization.

Get In Touch

Get in touch with AI Consulting Group via email, on the phone, or in person.

Email Us.

Send us an email with the details of your enquiry including any attachments and we’ll contact you within 24 hours.

info@aiconsultinggroup.com.au

Call Us.

Call us if you have an immediate requirement and you’d like to chat to someone about your project needs or strategy.

+61 2 8283 4099

Meet in Person.

We would be delighted to meet for a coffee, beer or a meal and discuss your requirements with you and your team.

Book Meeting